
Oraide Documentation
Release 0.2

Daniel D. Beck

August 19, 2013





CONTENTS

i



ii



Oraide Documentation, Release 0.2

Oraide is a Python library to help presenters with live coding, demonstrations, and recording screencasts. Oraide uses
tmux to create the illusion that someone is manually typing in a terminal session. Oraide is free software, provided
under a BSD-style license.

Contents:

CONTENTS 1

http://tmux.sourceforge.net/


Oraide Documentation, Release 0.2

2 CONTENTS



CHAPTER

ONE

TUTORIAL

This tutorial will walk you through the process of installing and using Oraide for the first time.

1.1 Prerequisites

Oraide requires tmux. Your system may already have tmux installed, or you may need to use your system’s package
manager to install it. For example, to install tmux with APT, run apt-get install tmux. On Mac OS X, you
can install tmux with Homebrew. To install tmux with Homebrew, run: brew install tmux.

1.2 Installation

To install Oraide, run pip install oraide, or download and install the latest release from PyPI.

1.3 Setting up

First, get a tmux session up and running:

1. Start a terminal session.

2. Start a new tmux session. Enter tmux new-session -s ’my_session’ and press Enter. You should
find yourself in a terminal session, as if you had just started. It’s a terminal session in a terminal session (yes,
it’s a little confusing, but it’s easy to leave; run exit at the command line, or, by default, press Ctrl + b
followed by the the & key).

This is the session we’ll be controlling with Oraide.

Note: Don’t crane your neck! If your presentation is going to be on a large screen or projector that would
be awkward for you to look at while you give your presentation, attach a second terminal to my_session
with tmux’s attach-session command. Put the second terminal on your screen (e.g., your laptop’s built-in
display) and give your neck a rest.

3. Start a separate terminal session. This is the session you will use to send keystrokes to my_session.

4. Start the Python interactive interpreter. Enter python and press Enter. It will look something like this:

3

http://brew.sh/
https://pypi.python.org/pypi/oraide/


Oraide Documentation, Release 0.2

$ python
Python 2.7.5 (default, Jun 9 2013, 16:41:37)
[GCC 4.2.1 Compatible Apple LLVM 4.2 (clang-425.0.28)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> _

1.4 Sending keystrokes

At it’s simplest, Oraide is a wrapper around tmux’s send-keys command. Let’s give it a try.

1. In the Python interactive session, import Oraide. Enter import oraide and press Enter. It’ll look like this:

>>> import oraide

2. Send some keys to the tmux session with the send_keys() function. It requires two parameters: a session
name and a string of keys to send. Enter this:

>>> oraide.send_keys(’my_session’, "echo ’Hello, World!’")

and then press Enter. If you look at your tmux session, you’ll see the second parameter entered at the prompt,
like this:

$ echo ’Hello, World!’

Note that the command is unexecuted, because we haven’t sent the Enter key yet.

3. Next, send the Enter key to my_session. Type:

>>> send_keys(’my_session’, ’Enter’, literal=False)

and then press Enter. The Enter key is sent to my_session.

The send_keys() function accepts an optional keyword argument, literal. tmux can try to convert the
names of keys into the keystrokes themselves (e.g., Escape to the Esc key), but this can be quite surprising.
Instead, Oraide defaults to treating the string literally. If you want to look up special keystrokes, set literal
to False (or, at least, something falsy).

See Also:

Remembering which strings convert to which keystrokes is annoying, so you can use attributes of the
oraide.keysmodule instead of literal strings. Then you can substitute Enter for oraide.keys.enter.

1.5 Session management

While send_keys() is useful, it’s tedious to re-enter the session name every time. To alleviate that frustration, and
introduce some more features, Oraide provides the Session class. Here’s a simple script that demonstrates its use:

from oraide import keys, Session

s = Session(’my_session’)

s.send_keys("echo ’Hello, World!’")
s.send_keys(keys.enter, literal=False)

The script is equivalent to the two send_keys calls made in the previous section. The Session.send_keys()
method is just like the send_keys function, but the session name is no longer needed.

4 Chapter 1. Tutorial



Oraide Documentation, Release 0.2

The Session class, by keeping the name of the session, allows for some special behavior, including the
Session.teletype() and Session.enter() methods. Let’s take a look:

from oraide import keys, Session

s = Session(’my_session’)

s.teletype("echo ’Hello, World!’")
s.send_keys(keys.enter, literal=False)

s.enter("echo ’Look Ma, no hands!’")

The teletype method works like send_keys with two differences:

1. Before the keys are sent, a prompt appears (in the terminal where the script is running, not the tmux session), so
you can control the pacing of your presentation.

2. The keys are sent one at a time, with a short delay between each, to simulate typing. It looks something like this
(slowed for dramatic effect):

The enter method does the same as teletype, except the Enter key is sent after the literal keys.

1.6 Auto-advancement

By default, the teletype and enter methods prompt before sending keys to the session. Sometimes this is incon-
venient. For example, you may want to narrate a longer sequence of steps without stopping. To suppress prompts, you
can use the Session.auto_advance() context manager, like this:

from oraide import keys, Session

s = Session(’my_session’)

with s.auto_advance():
s.teletype("echo ’Hello, World!’")
s.send_keys(keys.enter, literal=False)

s.enter("echo ’Look Ma, no hands!’")

The commands inside the with statement are executed without prompting.

If you want to auto-advance all keys sent to a session, you can instantiate a Session object with
enable_auto_advance=True.

Note: It’s unwise to auto-advance your entire presentation. Not only is it easier to practice shorter auto-advancing
sequences, but you also give yourself room to respond to questions or repeat an important point.

1.7 Learning more

Now you’re ready to start using Oraide. For more detailed information about the API, see the API Reference. If you’d
like to see more examples, try the scripts in Oraide’s examples directory. If you have problems, see Oraide’s GitHub
issues.

1.6. Auto-advancement 5

https://github.com/ddbeck/oraide/issues
https://github.com/ddbeck/oraide/issues


Oraide Documentation, Release 0.2

6 Chapter 1. Tutorial



CHAPTER

TWO

API REFERENCE

Oraide provides a set of conveniences around tmux’s send-keys command. For more information about how tmux
actually works, please see tmux’s man page.

2.1 oraide

oraide.send_keys(session, keys, literal=True)
Send keys to a tmux session. This function is a wrapper around tmux’s send-keys command.

If literal is False, tmux will attempt to convert keynames such as Escape or Space to their single-key
equivalents.

Parameters

• session – name of a tmux session

• keys – keystrokes to send to the tmux session

• literal – whether to prevent tmux from looking up keynames

class oraide.Session(session, enable_auto_advance=False, teletype_delay=None)
A session to which to send keys. This function allows for the deduplication of session names when repeatedly
sending keystrokes the same session.

Parameters

• session – the name of a tmux session

• enable_auto_advance – whether to send keystrokes to the session immediately, or wait for
confirmation, on certain methods

• teletype_delay (int) – the delay between keystrokes for the teletype() method (for
overriding the default of 90 milliseconds)

send_keys(keys, literal=True)
Send each literal character in keys to the session.

Parameters

• keys – literal keystrokes to send to the session

• literal – whether to prevent tmux from looking up keynames

See Also:

send_keys()

7

http://www.openbsd.org/cgi-bin/man.cgi?query=tmux
http://docs.python.org/3.2/library/functions.html#int


Oraide Documentation, Release 0.2

teletype(keys, delay=90)
Type keys character-by-character, as if you were actually typing them by hand.

The delay parameter adds time between each keystroke for verisimilitude. The actual time between
keystrokes varies up to ten percent more or less than the nominal value. The default, 90 milliseconds,
approximates a fast typist.

Note: If auto-advancing is disabled, then a confirmation prompt appears before keystrokes are sent to the
session.

Parameters

• keys – the literal keys to be typed

• delay (int) – the nominal time between keystrokes in milliseconds.

enter(keys=None, teletype=True, after=’Enter’)
Type keys, then press Enter.

By default, typing character-by-character is enabled with the teletype parameter.

Note: If auto-advancing is disabled, then a confirmation prompt appears before keystrokes are sent to the
session.

Parameters

• keys – the keystroke to be sent to the to the session. These keys may only be literal
keystrokes, not keynames to be looked up by tmux.

• teletype – whether to enable simulated typing

• after – additional keystrokes to send to the session with literal set to False (typically
for appending a special keys from oraide.keys, like the default, Enter)

auto_advance()
Return a context manager that disables prompts before sending keystrokes to the session. For example:

session.enter(’vim some_file.txt’) # prompt first
with session.auto_advance(): # disables prompts

session.teletype(’jjji’)
session.enter(’Hello, World!’, after=keys.escape)

session.enter(’:x’) # prompt first

2.1.1 Exceptions

If tmux’s send-keys command ends with an error status code, an exception is raised.

exception oraide.TmuxError(returncode, cmd, output=None)
The command sent to tmux returned a non-zero exit status. This is an unrecognized tmux error.

This exception type inherits from subprocess.CalledProcessError, which adds returncode, cmd,
and output attributes.

exception oraide.ConnectionFailedError(returncode, cmd, output=None)
Bases: oraide.TmuxError

The tmux server connection failed (often because the server was not running at the time the command was sent).

8 Chapter 2. API Reference

http://docs.python.org/3.2/library/functions.html#int
http://docs.python.org/3.2/library/subprocess.html#subprocess.CalledProcessError


Oraide Documentation, Release 0.2

exception oraide.SessionNotFoundError(returncode, cmd, output=None, session=None)
Bases: oraide.TmuxError

The tmux session was not found (but a connection to tmux server was established).

This exception type adds another attribute, session, for your debugging convenience.

2.2 oraide.keys

This module provides shortcuts for sending special keystrokes to tmux sessions. The functions and constants are
typically used with oraide.Session.send_keys(), or the after parameter on certain oraide.Session
methods.

The constants of this module are provided as a Pythonic substitute for the strings used in tmux’s keyname
lookup table. For example, to send a backspace key, the string ’BSpace’ may be replaced with a reference to
oraide.keys.backspace. The following keys are provided:

• backspace

• end

• enter

• escape

• home

• page_down

• page_up

• space

• tab

• up

• down

• left

• right

as well as the function keys f1 through f20.

oraide.keys.alt(key)
Make a string that tmux will parse as the alt key (Alt) and key pressed at the same time.

Note: The key parameter is case-sensitive. If key is uppercase, it’s equivalent to entering Shift and the key.

>>> from oraide.keys import alt
>>> alt(’a’) # alt + a
’A-a’
>>> alt(’A’) # alt + shift + a
’A-A’

oraide.keys.command(key)
Make a string that tmux will parse as the command key (also known as the meta, super, cmd, Apple, and
Windows key) and key pressed at the same time.

Note: The key parameter is case-sensitive. If key is uppercase, it’s equivalent to entering Shift and the key.

2.2. oraide.keys 9



Oraide Documentation, Release 0.2

>>> from oraide.keys import command
>>> command(’a’) # command + a
’M-a’
>>> command(’A’) # command + shift + a
’M-A’

oraide.keys.control(key)
Make a string that tmux will parse as the control key (Ctrl) and key pressed at the same time.

Note: The key parameter is case-sensitive. If key is uppercase, it’s equivalent to entering Shift and the key.

>>> from oraide.keys import control
>>> control(’a’) # ctrl + a
’C-a’
>>> control(’A’) # ctrl + shift + a
’C-A’

10 Chapter 2. API Reference



CHAPTER

THREE

HISTORY

Oraide was created by Daniel D. Beck. The library’s name is a portmanteau of orate and aide.

3.1 Release 0.3

• Issue #1: Added Python 3 support.

• Calling Session.teletype() with the default delay raised a TypeError exception. The bug was fixed
and tests were added.

• Calling Session.enter() without providing a keys argument raised a ValueError exception. The bug
was fixed and tests were added.

• Cleaned up wording and formatting in prompt messages.

• Added a missing parameter to Session.enter()‘s documented parameter list.

• Added tests to cover prompts.

• Replaced meaningless “hello world” strings in the test suite with strings that at least pretend to be relevant.

3.2 Release 0.2

Complete rewrite, with all new API and documentation.

3.3 Release 0.1

Initial version.

If you’d like to review the source, contribute changes, or file a bug report, please see Oraide on GitHub.

11

http://www.danieldbeck.com/
https://github.com/ddbeck/oraide/issues/1
https://github.com/ddbeck/oraide


Oraide Documentation, Release 0.2

12 Chapter 3. History



PYTHON MODULE INDEX

o
oraide, ??
oraide.keys, ??

13


